Publications

Polyacrylamides

Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances

Braun O, Coquery C, Kieffer J, Blondel F, Favero C, Besset C, Mesnager J, Voelker F, Delorme C, Matioszek D.  

Molecules. 2022; 27(1):42. 

In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the “green chemistry” concept and 100 years after the revolutionary publication of Staudinger on macromolecules.

Link to the publication

Polymer flooding

Some Key Features to Consider When Studying Acrylamide-Based Polymers for Chemical Enhanced Oil Recovery

A. Thomas, N. Gaillard, C. Favero. 

Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, Institut Français du Pétrole (IFP), 2012, 67 (6), pp.887-902. 10.2516/ogst/2012065 .

Among Chemical Enhanced Oil Recovery (CEOR) methods, polymer flooding is a straightforward technique with a long commercial history and proven results. It consists in injecting polymer-augmented water into a subterranean formation in order to improve, thanks to the viscosity increase, the sweep efficiency in the reservoir and provides a mobility control between water and the hydrocarbons. However, implementing successfully a polymer flood in the field requires specific know-how to avoid polymer degradation and associated viscosity loss.

Polymer Flooding

Antoine Thomas

“Polymer Flooding”, in Chemical Enhanced Oil Recovery (cEOR) – a Practical Overview. London, United Kingdom: IntechOpen, 2016 [Online]. 

The focus of this chapter is on polymers and their use to enhance oil recovery through the process known as polymer flooding. Emphasis is given to practical information relevant to field application(s) of polymer flooding. Therefore, the purpose of this chapter is to provide a brief but thorough overview of key concepts necessary to understand this technology for its successful implementation in the field.

Polymer Retention Determination in Porous Media for Polymer Flooding in Unconsolidated Reservoir

 
Polymer flooding is a well-established technique aimed at improved recovery factors from oilfields. Among the important parameters affecting the feasibility of a large deployment, polymer retention is one of the most critical since it directly impacts the oil bank delay and therefore the final economics of the project. This paper describes the work performed for the East-Messoyakhskoe oilfield located in Northern Siberia (Russia). A literature review was first performed to select the most appropriate methodology to assess polymer retention in unconsolidated cores at residual oil saturation. 4 polyacrylamide polymers were selected with molecular weights between 7 and 18 M Da and sulfonated monomer (ATBS) content between 0 and 5% molar. An improved 2-fronts dynamic retention method along with total organic carbon—total nitrogen analyzers were used for concentration measurement. Retention values vary between 93 and 444 The sentence could be rephrased μg/g, with the lowest given by the polymers containing ATBS, corroborating other publications on the topic. This paper also summarizes the main learnings gathered during the adaptation of laboratory procedures and paves the way for a faster and more efficient retention estimation for unconsolidated reservoirs.
 
 

Books

Polymer Flooding

Antoine Thomas

Wiley – ISBN: 9781119537588, April 2019, 328 pages.

Essentials of Polymer Flooding Technique introduces the area of polymer flooding at a basic level for those new to petroleum production. It describes how polymers are used to improve efficiency of “chemical” floods (involving surfactants and alkaline solutions). The book also offers a concise view of several key polymer-flooding topics that can’t be found elsewhere. These are in the areas of pilot project design, field project engineering (water quality, oxygen removal, polymer dissolution equipment, filtration, pumps and other equipment), produced water treatment, economics, and some of the important field case histories that appear in the last section. 

Polymer Flooding

Antoine Thomas

Рассмотрены основы технологии полимерного заводнения в нефтегазовой отрасли на основе EOR-процессов и химических методов повышения нефтеотдачи SP и ASP.

Последовательно описаны все стадии применения технологии (включая анализ коллектора, выбор и анализ полимера, процедуру нагнетания, инженерно-проектные работы на скважине), а также оборудование для подготовки раствора. Даны практические рекомендации по использованию системы ASP с учетом особенностей месторождения.

В отдельных главах подробно рассмотрены очистка пластовой воды и сравнительная оценка экономических параметров применения систем.

Специальная глава посвящена конкретным примерам применения полимерного заводнения, включая наиболее сложные случаи, особые условия нагнетания и т. д.

Книга предназначена специалистам по добыче нефти, промысловой химии, сервисных компаний, разработчикам и поставщикам реагентов и систем, студентам профильных специальностей.

Polymer-Improved Oil Recovery

Ken Sorbie

Boca Raton, FL: CRC Press, Inc., 1991. 359 pages. Hardcover ISBN978-0-216-92693-6

The importance of oil in the world economy cannot be overstated, and methods for recovering oil will be the subject of much scientific and engineering research for many years to come. Even after the application of primary depletion and secondary recovery processes (usually waterflooding), much oil usually remains in a reservoir, and indeed in some heterogeneous reservoir systems as much as 70% of the original oil may remain. Thus, there is an enormous incentive for the development of improved or enhanced methods of oil recovery, aimed at recovering some portion of this remainil)g oil. The techniques used range from ‘improved’ secondary flooding methods (including polymer and certain gas injection processes) through to ‘enhanced’ or ‘tertiary’ methods such as chemical (surfactant, caustic, foam), gas miscible (carbon dioxide, gas reinjection) and thermal (steam soak and drive, in-situ combustion).

Polymer Flooding

Walter Littman

Elsevier1 sept. 1988 – 211 pages

This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10 to 15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap.

Modern Chemical Enhanced Oil Recovery - Theory and Practice

James Sheng Gulf Professional Publishing 2010. Hardcover ISBN: 9781856177450 – eBook ISBN: 9780080961637 This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10 to 15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap.

Enhanced Oil Recovery

Vladimir Alvarado & Eduardo Manrique

Gulf Professional Publishing; 1st edition (June 16, 2010). 208 pages. ISBN-10: ‎1856178552

Enhanced-Oil Recovery (EOR) evaluations focused on asset acquisition or rejuvenation involve a combination of complex decisions, using different data sources. EOR projects have been traditionally associated with high CAPEX and OPEX, as well as high financial risk, which tend to limit the number of EOR projects launched. In this book, the authors propose workflows for EOR evaluations that account for different volumes and quality of information. This flexible workflow has been successfully applied to oil property evaluations and EOR feasibility studies in many oil reservoirs. The methodology associated with the workflow relies on traditional (look-up tables, XY correlations, etc.) and more advanced (data mining for analog reservoir search and geology indicators) screening methods, emphasizing identification of analogues to support decision making. The screening phase is combined with analytical or simplified numerical simulations to estimate full-field performance by using reservoir data-driven segmentation procedures.

Enhanced Oil Recovery, I. Fundamentals & Analysis

E.C. Donaldson, G.V. Chilingarian, T.F. Yen

Elsevier Science 1985. 396 pages. eBook ISBN: 9780080868721

An in-depth study of the fundamental aspects of enhanced oil recovery (EOR), this book brings together detailed analyses of proven techniques. It begins with the current theories of the origin of oil and ends with a treatise on waterflooding which is the basis of the majority of EOR processes. Two and three-phase relative permeability relationships are discussed since they form the basis for fluid flow processes in porous media. The advent of EOR has increased the need for a better understanding of three-phase flow because this has become an integral part of carbon dioxide and steam injection, yet is an area of experimental study that has been seriously neglected. The book gives a complete review and theoretical analysis of two- and three-phase fluid flow, plus a basic introduction to single-well pressure transient testing which is essential to the evaluation of volume, intrinsic reservoir pressure, reservoir discontinuities, in situ permeability and many other data required for complete reservoir evaluation. A discussion of oilfield waters is followed closely by the chemical and physical properties of employing various current EOR techniques.The book will interest a wide range of readers. Teachers of petroleum engineering will find it a ready reference to basic requirements for implementation of various EOR processes. Petroleum engineering researchers can use it to review the current state-of-the-art of the basic premise of EOR and find in it the necessary background analyses for projection of future research. The field-oriented, practical petroleum engineer will discover it to be a reliable reference to criteria for pre-EOR reservoir analysis.

Enhanced Oil Recovery, II. Processes & Operations

E.C. Donaldson, G.V. Chilingarian, T.F. Yen

Elsevier Science 1989 eBook ISBN: 9780080868738

Written by foremost experts in the field, and formulated with attention to classroom use for advanced studies in reservoir characterization and processes, this book reviews and summarises state-of-the-art progress in the field of enhanced oil recovery (EOR). All of the available techniques: alkaline flooding; surfactant flooding; carbon dioxide flooding; steam flooding; in-situ combustion; gas injection; miscible flooding; microbial recovery; and polymer flooding are discussed and compared. Together with Volume I, it presents a complete text on enhanced recovery technology and, hence, is an almost indispensible reference text.This second volume compliments the first by presenting as complete an analysis as possible of current oilfield theory and technology, for accomplishment of maximum production of oil. Many different processes have been developed and field tested for enhancement of oil recovery. The emerging philosophy is that no single process is applicable to all petroleum reservoirs. Each must be treated as unique, and carefully evaluated for characteristics that are amenable to one or two of the proven technologies of EOR. This book will aid the engineer in field evaluation and selection of the best EOR technology for a given oilfield. Even the emerging technology of microbial applications to enhance oil recovery are reviewed and explained in terms that are easily understood by field engineers.The book is presented in a manner suitable for graduate studies. The only addition required of teachers is to supply example problems for class work. An appendix includes a reservoir mathematic model and program for general application that can also be used for teaching.